Huawei Digital Power, Your Sustainable Partner for Building a Low Carbon Smart Society

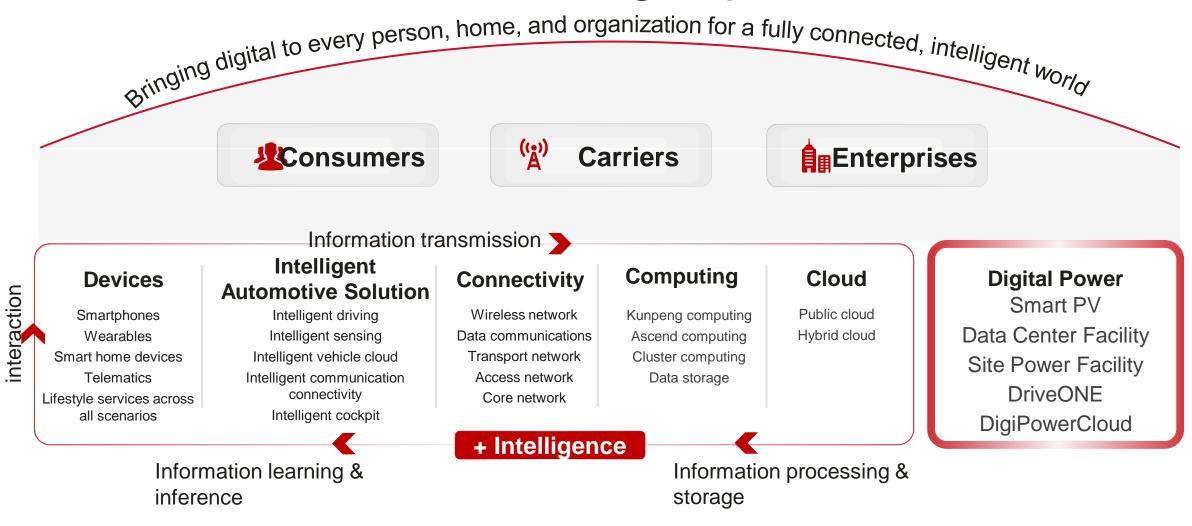
HUAWEI

Huawei Overview

Huawei: Leading provider of ICT infrastructure and smart devices

Vision & mission

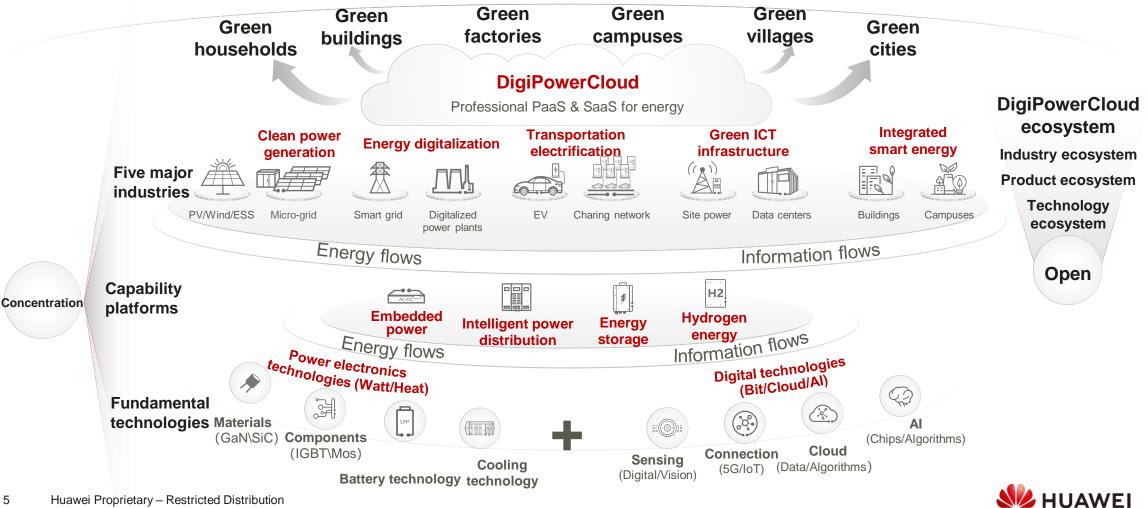
Bring digital to every person, home, and organization for a fully connected, intelligent world


employees 170 +countries and regions No. 96 on Fortune Global 500 No. 2 in R&D investment 54.8%

195,000

of employees are in R&D

Focusing on ICT to provide products, solutions, and services to three customer groups



Information distribution &

Digital Power strategy overview

Developing clean energy, promoting the digitalization of traditional energy, integrating digital and power electronics technologies, and converging information and energy flows to drive energy revolution for a better, greener future

Evolve society from low carbon to zero carbon

Digital Power Global Platforms: Leveraging the domain specific advantages globally to keep leading

Huawei Inverter Shipment Is Leading in the World No.1 Global Inverter Shipment since 2015 to 2021

Global PV inverter market share rankings by shipment, 2021 H Huawei S Global G S Market G G 23% Share G -42% G 42% • G S ~23% 3% • F P Global PV inverter Fill S I shipments: 225,386 MWac 3% YOY change: 22% S S Leading 5% C Π K **Market Share** 21% E F 6% K A Globally All Others S 6% ■ Ir HUAWEI String inverter market share > APAC PV inverter market share rankings by shipment, 2021 Total market Share of the 2nd to 8th Europe PV inverter market share rankings by shipment, 2021 H H S **S** String S S G S inverter G G G market E F 4% 4% S Europe PV inverter share E F APAC PV inverter shipments: 50,770 MWac A P 6% shipments: 116.064 MWac YOY change: 52% ~42% K S YOY change: 15% G T G S 22% l Ir E F A 17% C 9% S

A

HUAWEI

Smart PV

4%

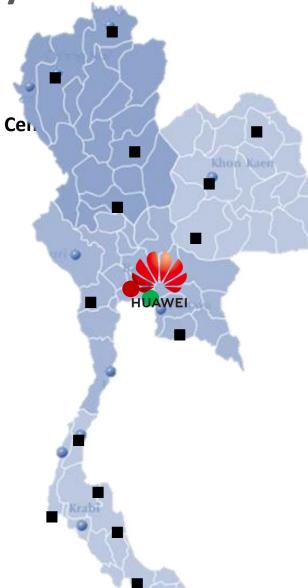
Source: Wood Mackenzie

Achievements

Huawei Supporting Global Customers Success with Optimal LCOE (cost/kWh)

8 Huawei Confidential

Quick Response by Local Service Team and Local Warehouses


1 Country Technical Assistance Cen

1 Country Warehouse

15 City Warehouses

2 Training Centre's

2 Business day - shipment

Country Technical Assistance

HUAWEI Centre

Country Warehouse

City Warehouse

City Name of W/H	Supported	Management
Location	project	model
Chiangmai Chiangrai Chumporn KhonKhaen Nakornratchasima Nakornsawan Nakornsrithammarat Phuket Pitsanuloke Ratchaburi Rayong Sakonnakorn Songkhla Surathani Ubonratchathani	All projects	

Smart PV: All-scenario PV & storage solution, accelerating the shift to zero carbon generation

Smart Residential and C&I PV Solution for Better LCOE

The Requirement of New Solution for Residential Scenario is Urgent

30% to 70% Higher Electricity Cost in Europe

In Germany, electricity price increased by 33% from 33c euro to 41c EUR/kWh in 3 years (from https://www.energypriceindex.com/price-data) In 2021, power outages due to severe wind gusts affected more than 500,000 properties across Victoria, Australia (from https://www.energy.vic.gov.au/safety-and-emergencies/power-outages)

Power

Outages

Public Concerns on Residential PV+ESS Safety

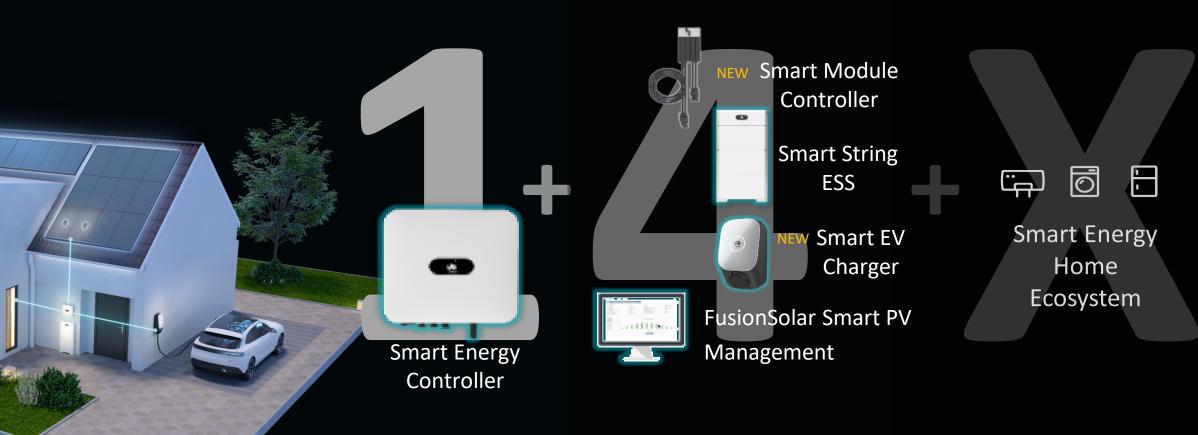
ESS fire and explosion accidents were

reported

(from https://www.pv-magazine.com/2022/03/10/senecremotely-switches-off-its-residential-batteries-after-explosionin-germany/)

Residential Solution 3.0: Green Life Reimagined

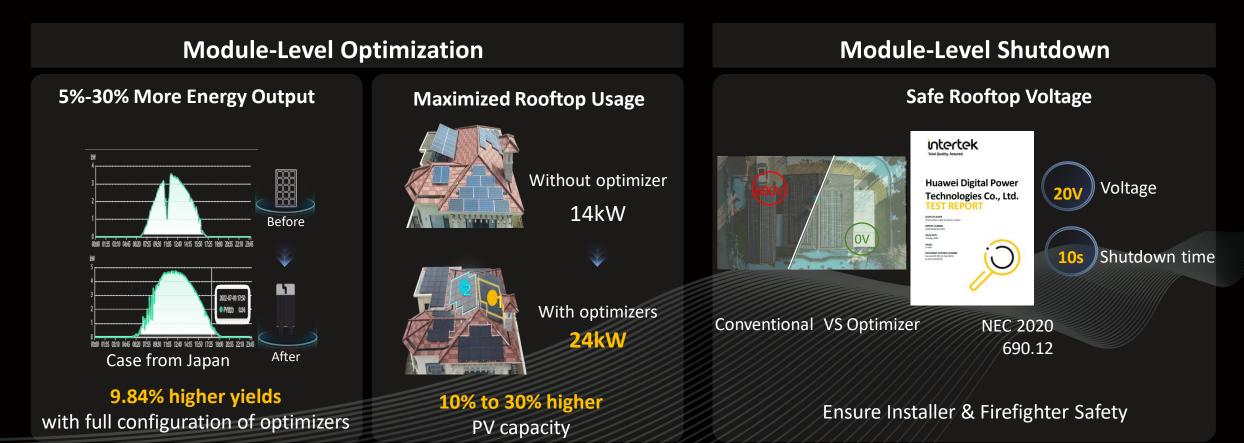
Optimal Electricity Cost


- Optimizer increase 5-30% yield
- 10% more usable ESS energy

Active Safety

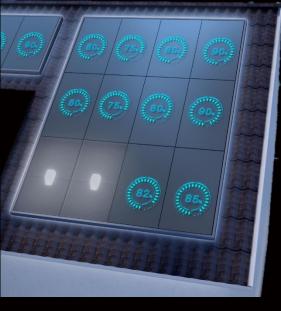
- Module voltage shutdown, RSD
- AFCI, < 0.5 shutdown

Better Experience


- One-Fits-All solution
- <5s auto physical layout mapping

Smart Module Controller The Wonderful Option for Your Life

SUN2000-600W-P Available now



Two Main application scenarios

No Optimizer

Full Optimizer

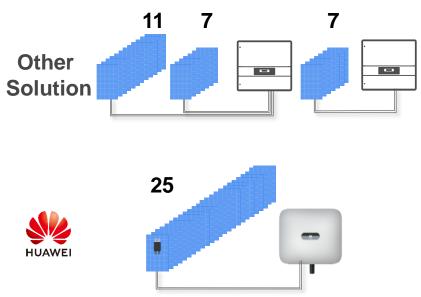
Digital Features for Better Experience

< 5min Troubleshooting

Pinpoint module disconnection on the APP

Multi-Physical Layout

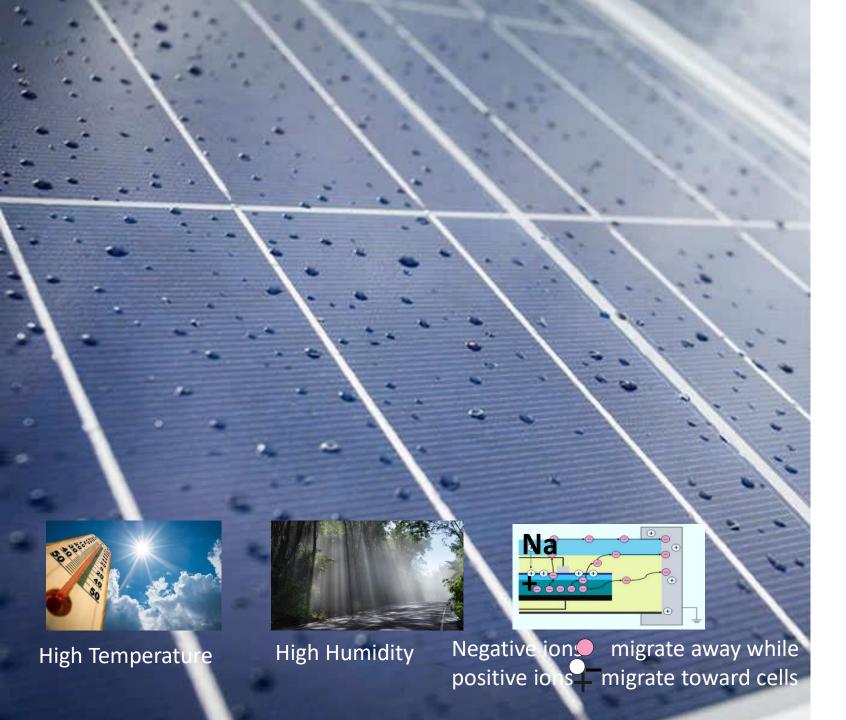
Performance Detection


20-40% 40-60% 60-80% 80-100% 0-20%

Support up to 20 physical layouts for a system

Identify modules in different colors

More Modules with Long & Flexible String Design


Comparison Case

•Max. 200% DC/AC oversizing for SUN2000-5KTL-L1 & 10KTL-M1

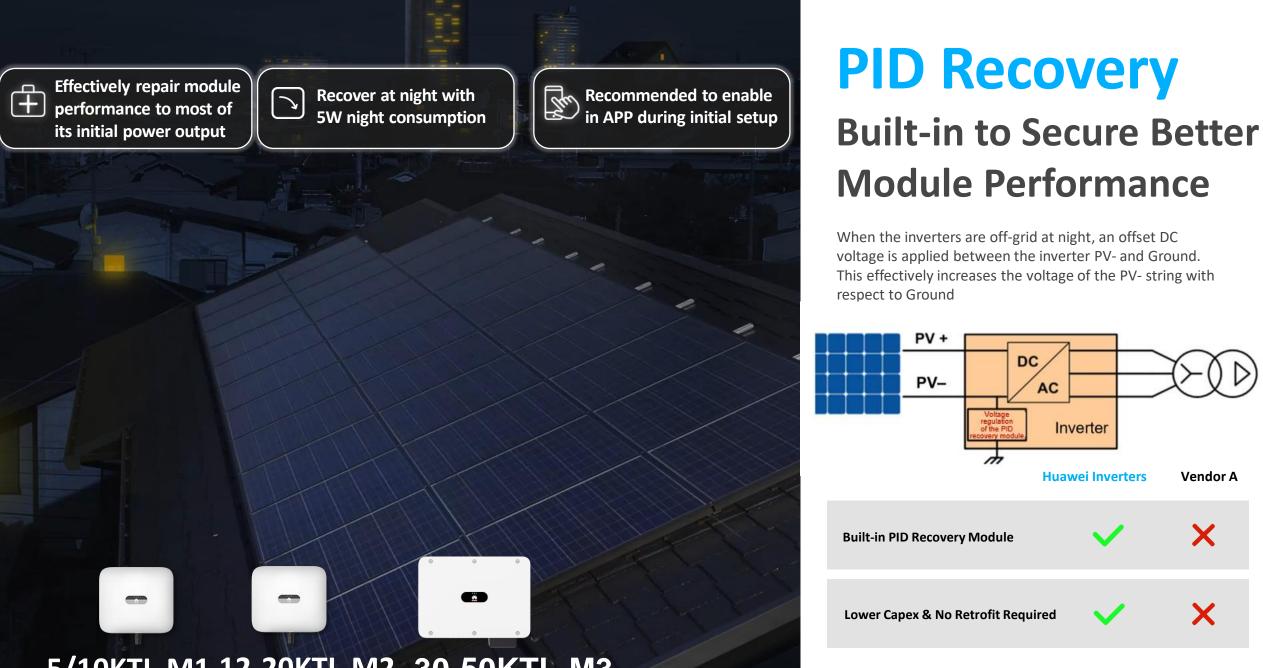
	SUN2000-3/5KTL-L1	SUN2000-5/10KTL-M1		
Maximum DC power per string	5,000 W	10,000 W		

PID Can Severely Reduce PV System Output by 30% or More

What is it?

- Potential Induced Degradation, a phenomenon that negatively affects power output of PV modules

What causes PID?


- Due to potential difference, anode ion (eg. Na+ ion) flows from the glass plate into the semiconductor material of the solar cell and affect the cell performance

What is the negative impact?

- High humidity, high temperature and contamination

PID can significantly reduce the power output of a PV module by 30% or more

5/10KTL-M1 12-20KTL-M2 30-50KTL-M3

Electric Arcing Is Threatening the Safety of PV System & Underlying Buildings

What is it?

- electrical breakdown of air that produces an prolonged electrical discharge

What causes Electric Arcing?

- Unreliable soldered joints within modules
- Broken PV cables
- Loosen PV connectors

What is the harm?

Can reach temperature of over 3000°C & easily start a fire

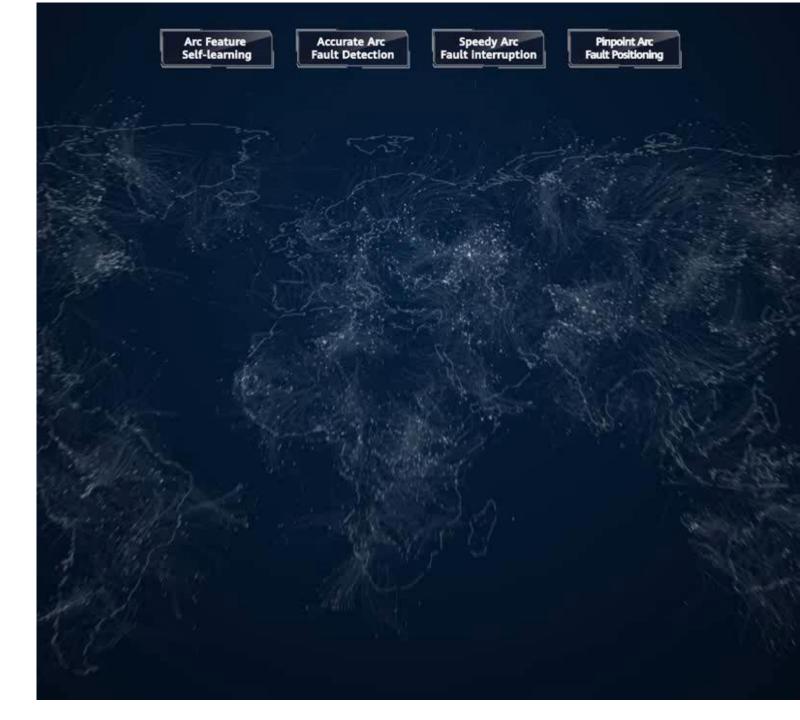
Arc Detection Challenges

Arc noise is generally weak and only accounts for 0.1% of the normal current signal, it is difficult to detect and often leads to missing detection

Inverter/Loads/Grid interference signals, as well as spectral overlay with normal current signal leads to faulty detection

Al Powered

Active Arcing Protection


What is AI Powered AFCI?

- HUAWEI inverter keeps self-learning new arc feature to accurately protect system from arc fault, even under complex noise

Self-learning new arc features with AI model

Accurate arc fault detection via local neural network algorithm

Speedy arc fault protection by inverter shutdown in 0.5s

AI BOOST

PV Arcing with/without AFCI Comparison

No Fuse or Other Quick-wear Parts, Inverter Touch Free

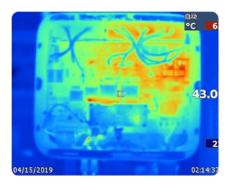
Natural Cooling Verified by Telecom & Solar Application*

* For 3–10KTL inverter models

TUV verified: annual failure rate < 0.5%

No Fuse No LCD No Button

Station Phase I, 200 units, 963 running days Failure Rate: 0, 189%


Station Phase III, 4939 units, 583 running days

Failure Rate:

Station Phase IV, 1790 units, 207 running days

High efficient thermal design to ensure low temperature within enclosure

Smart String Energy Storage System

LUNA2000-5/10/15-S0

Modular ⁺Energy Optimizer

SOH SOC

New Installation Scenario

Auto SOC Adjustment

Within 1 charging/discharging cycle

Expansion Scenario

Old Mixed with New

Easily Expand Your Capacity

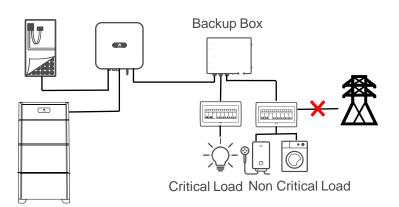
New Battery pack could charge/discharge independently, avoid the influence from the old battery pack

No Pre-charge Needed When Apply New Battery Pack In System

(i)

-

Modular ⁺4 Level Safety Protection



No Worry About Power Outage With Backup

Powset m switches to backup mode to supply emergent power to critical load automatically when power outage

> Smart string ESS supports black start from blackout to restore system operating

᠕ᡀ

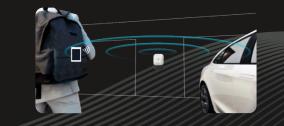
FusionCharge AC Charge Smarter

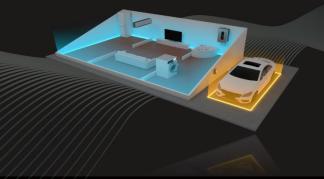
A P O 7 N - E U / A P 2 2 N - E U

roughly 85% of charging will be done at home according to estimate

Install in 3 Steps

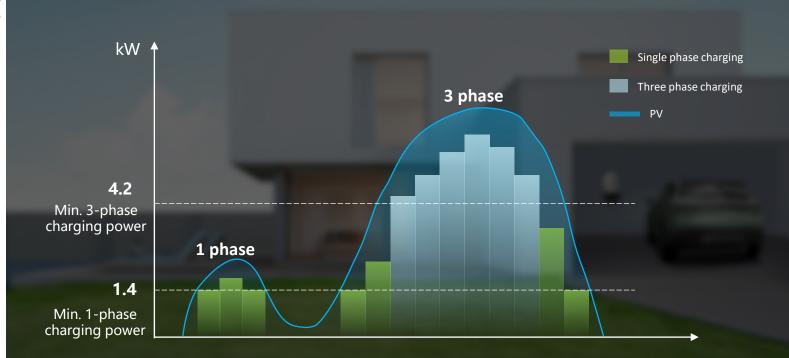
Installation in 16 min, replacement in 4 min


5m Close to Access


Bluetooth automatic authentication

Load Balancing

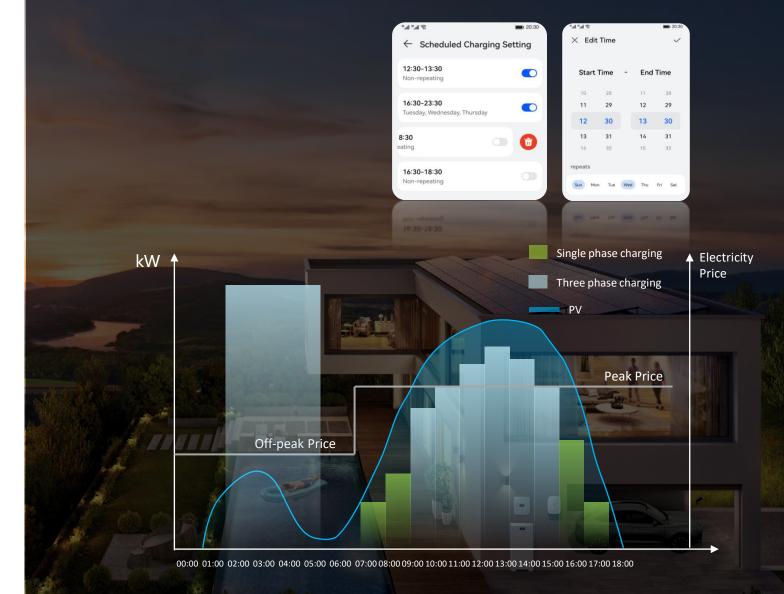
Dynamic charging power, no fuse tripping



PV Power Preferred for optimal Electricity Cost

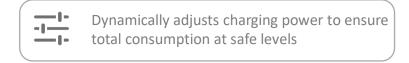
Green power adaptive charging Minimize extras electricity cost

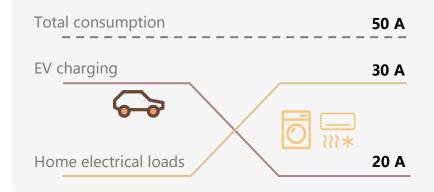
Automatic phase switchover Maximize power utilization at 1.4–4.3 kW

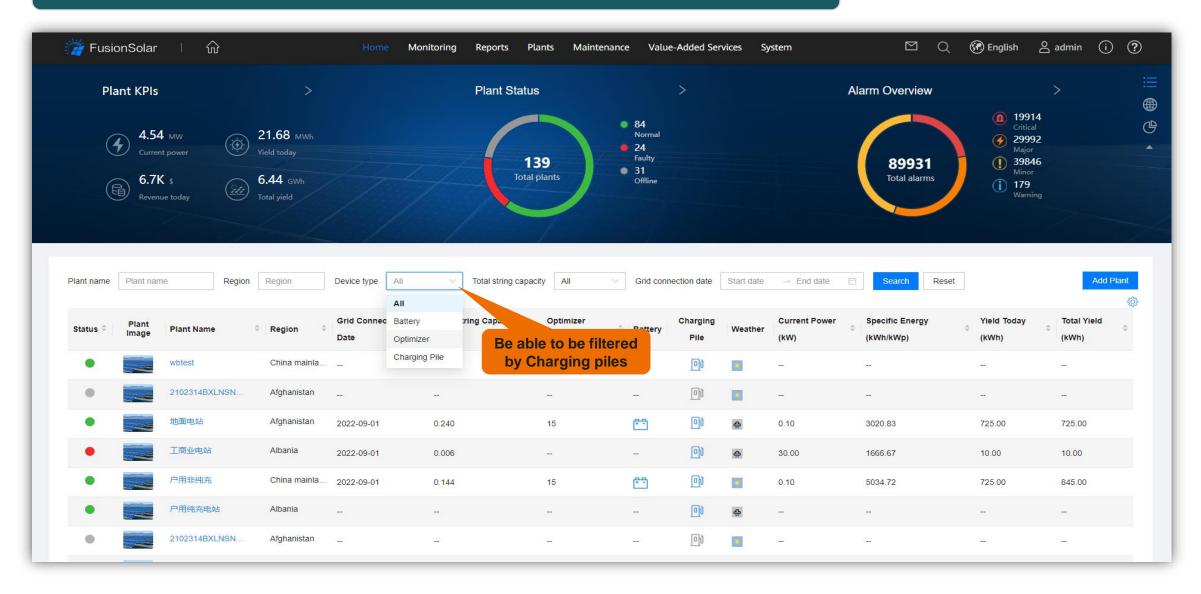


Scheduled Charging for flexible Configuration

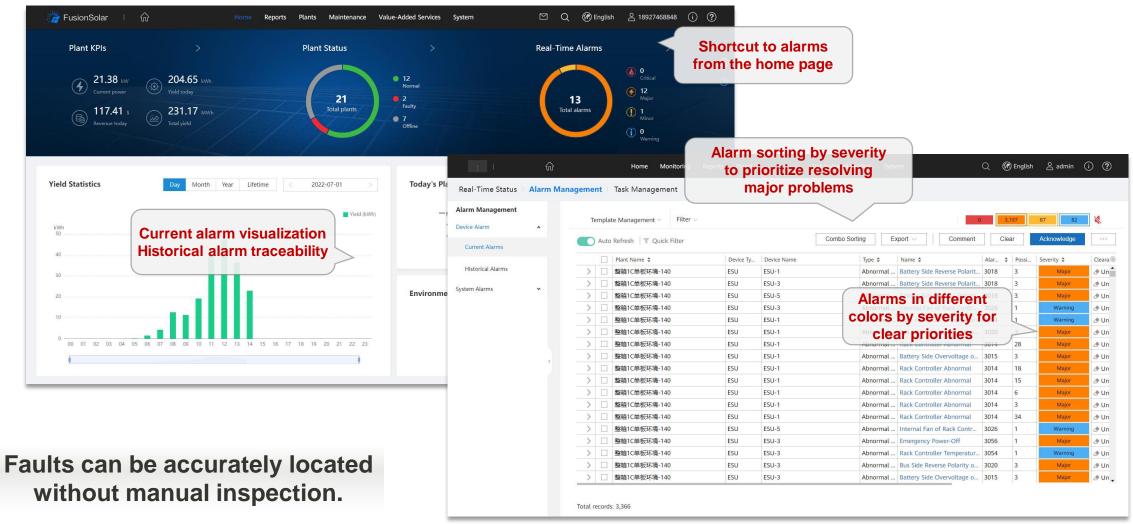
Scheduled charging at off-peak hours Lowering electricity bills


Max. 28 Time Periods Setting by APP Make Charging schedule flexible

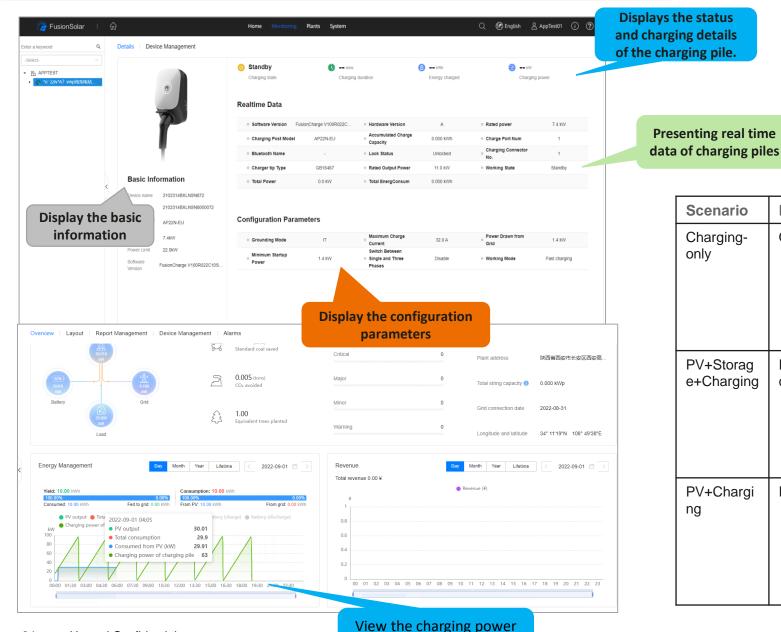

L



Dynamic Charging Power No Overload, No Fuse tripping



Adding Charging Piles for Device Type Filtering on the Home Page



Real-Time Alarm Reporting, Accurate Fault Locating, and Shorter Service Interruption Duration

Viewing Charging Pile Details on the FusionSolar SmartPVMS Web

curve of the charging pile

Plant Components

PV + energy storage +

PV + charging pile

charging pile

Only charging piles

Scenario

Charging-

PV+Storag

e+Charging

PV+Chargi

ng

only

Chang

removed.

section.

section.

The plant overview page is

Device Management page.

The charging power curves are

Charging piles are added to the

The charging power curves are

Charging piles are added to the

Device Management page. The charging pile details

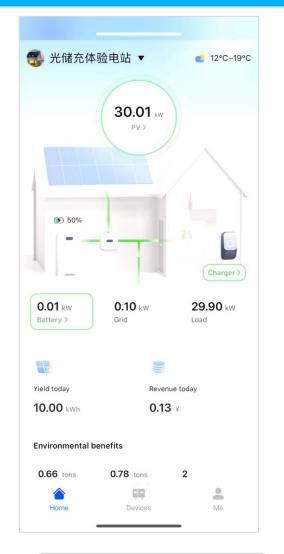
information is added.

added to the Energy Management

NUAWEI

Device Management page.

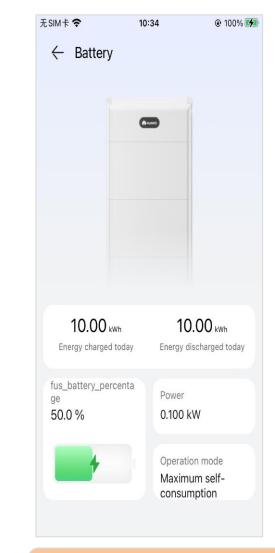
The charging pile details information is added.


added to the Energy Management

The charging pile details information is added.

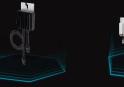
The charging pile details

information is added.


Remote APP owner login home page

Residential PV + Storage + EV Scenario Owner homepage

Optimized energy management for easier understanding


Click Energy Storage Device on the home page to view the key KPIs of the energy storage device.

FusionSolar Smart PV C&I Solution 2.0 1-1: **3-1**: Active Safety Smart O&M **Smart PV Smart Module Optimal Electricity Cost** Controller Controller

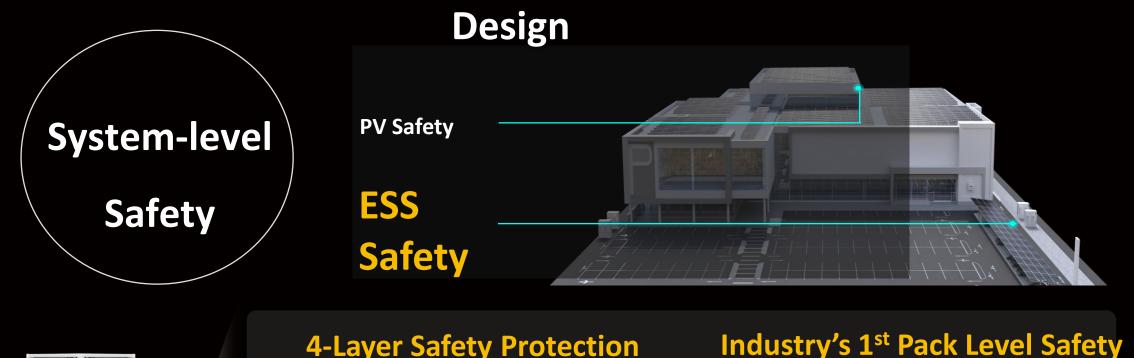
One-Fits-All Solution

"1+3"

Smart String ESS

3-2:

SmartPVMS


3-3:

Taking the Business Safety to the New Heights via System-level Safety

Industry's 1st Smarter Energy Storage System with Module⁺

LUNA2000-200kWh-2H0/2H1

4-Layer Safety Protection

From Battery Pack To System

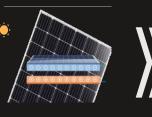
Pack-level Rack-level

System-level **Cloud BMS**

with Energy Optimizer

Energy Optimizer

Battery Cell


System-level Optimization to Energize More Earnings

System-level Optimization

Module-level | String-level

Solar to DC Power

DC Power to AC Power

Full Chain Optimization

Shanghai DURR with 4.80% Higher Yields

thanks to optimizer module-level optimization

Vietnam Site with 1.56% Higher Yields

thanks to inverter smart MPP tracking algorithm

Smart I-V Curve Diagnosis 4.0: Online and Full Detection, Reducing O&M Costs

Authentication: L4 - highest level in the industry

Widely used in plants around the world (> 15 GW) to improve plant O&M efficiency

		I-V Curve Scanning		Abnormality Identification		Fault Diagnosis	Project: XX r	oftop PV plant in Ningbo, Zhejiang		Project: XX PV plant in a coal n	nining subsidence	e area of Yangquan, Shanxi				
	Performance Level	Measurement Precision	Scanning Precision Rate	Recognit Class I defect	tion Rate ¹ Class II defect	Recurren ce Rate ²	Root Cause Analysis Accuracy ³									
	RUS	Voltage and current ≤ 1.0%	≥ 70%	≥ 75%	≥ 70%	≥ 70%	≥ 70%	4						Shadi	Shading from trees	
	L2mmun	Voltage and current ≤ 1.0%	≥ 80%	≥ 85%	≥ 80%	≥ 80%	≥ 80%	L anderstand particular in								
	L3	Voltage and current ≤ 0.5%	≥ 85%	≥ 90%	≥ 85%	≥ 85%	≥ 85%					STARLE !!				
	L4	Voltage and current ≤ 0.5%	≥ 95%	≥ 95%	≥ 90%	≥ 90%	≥ 90%	PV module h	neat spot eff	fect	PV module die circui			Front/	Rear row shading	
-	Actual test result	≤ 0.5%	97.5%	100%	96.4%	96.2%	96.8%	528 Diagnosed s	trings	62 Faulty strin		1 .7% ailure rate	3960 Diagnosed strings	188 Faulty strings	4.7% String failure rate	
Huawei Smart I-V Curve Diagnosis VS I-V curve scanning of other vendors																
	Multi-scenario adaptability Energy							cheduled scanning				-	fined data management	-	High availability of diagnostic reports	
	 Applicable to large-scale ground-mounted and mountainous scenarios Compatible with mainstream modules: half- cell/shingled/166/182/210 mr 		loss • Pre O&	 Quantifying the energy yield loss of faulty strings Precise guidance for PV plant O&M 			 Periodic diagnosis and email notification ensuring user experience 		interfaces		с • F	The inverter automatically obtains irradiance data. Parameters of PV strings can pe configured.	report, di O&M rep • Provide	 Provide diagnosis overview report, diagnosis report, and fault O&M report. Provide raw data for the customer. 		
	Limite	d adaptability	No	No energy yield loss assessment		No	No scheduled scannin		g No ISV integration		Oł	otaining unrefined data from the EMIs		or availability of gnostic reports		
	 PV string-based diagnosis Hard to apply in various scenarios 		• No	Not supported			Not supported				• P	Obtaining data from the EMIs larameters can be configured nly for inverters.	availabili	cause analysis and low ty a cannot be exported.		

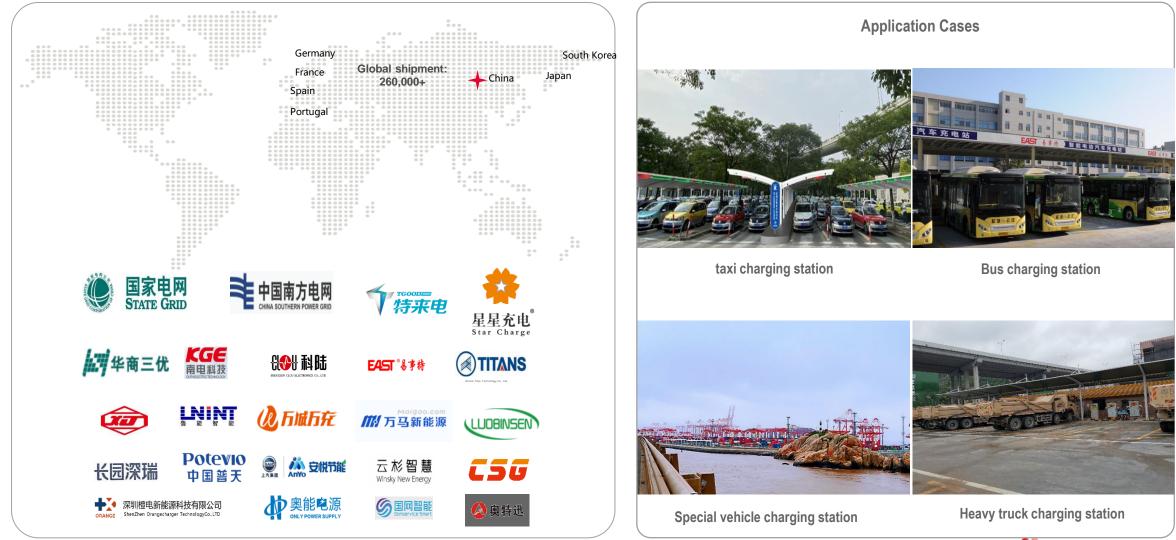
Smart O&M

Huawei HiCharger DC Charging Module ——Helping Operators Robust Operation

Huawei HiCharger DC charging module

The first charging module that award TÜV reliability certification

High eliability	Hig efficie		Low noise				
Annual failure ate from 2% to 0.2%	Efficie from 95 97%	5% to	Silent mode 55 dBA				
High densit	y	High-voltage fast charging Voltage from 750V to					
The power de	nsity is	1000V					
1.5 times con with the indu	·	15min charging SOC from 30% - 80%					
Optimal TCO							


Annual O&M cost saving
0.1THB/W

Annual Electricity Fee Saving
0.08THB/W

High-density cabinet cost saving

0.025THB/W

Charging power module: global total shipment 300,000, covering 8 regions, serving 30 CPOs

Huawei Inside – mPower DC Charging Module

Cases in Thailand

EV Charger brand - Power Core

	Customer	Quantity	Type of Chargers
1	PTT-OR	450	120/160kW
2	BMW	12	60/160kW
3	Mobility One	2	160kW
4	CP-Lotus	4	160kW

Thank you.

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。 Bring digital to every person, home and organization for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

